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Classical nonlinearity and quantum decay: The effect of classical phase-space structures
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We investigate the decay process from a time dependent potential well in the semiclassical regime. The
classical dynamics is chaotic and the decay rate shows an irregular behavior as a function of the system
parameters. By studying the weak-chaos regime we are able to connect the decay irregularities to the presence
of nonlinear resonances in the classical phase space. A quantitative analytical prediction that accounts for the
numerical results is obtained.
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I. INTRODUCTION

In the past years, many conjectures have been put
ward, and tested in various system models, in order to
swer the fundamental question in quantum chaos: what is
signature of classical chaos in the quantum world? Amo
these, one of the most intriguing is the idea that class
chaos can induce large-scale fluctuations on a genuine q
tum phenomenon such as the tunneling process. Sta
from the seminal paper of Davis and Heller@1#, who first
noted the occurrence of coherent tunneling between reg
tori separated by a chaotic region, the influence of class
chaos on quantum tunneling has been verified in many
tems and is now accepted in the literature as a fingerprin
classical nonintegrability. It is very simple to describe th
effect. Let us consider a system that is classically chaotic
invariant under a symmetry operation, for example, sp
inversion. If the classical system supports a regular torus
symmetry there might also be a second torus that is dist
from its symmetric partner, for instance, two symmetric t
encircling the bottom of the two wells of a double-well p
tential. Moreover, let us suppose that the two tori are la
enough to support quantum states. Under this condition,
quantum system will show coherent tunneling between
states located in the two symmetric tori. If now one syst
parameter is changed~e.g.,\), contrary to the expectation
of ordinary semiclassical analysis, the tunneling rate sho
strong irregularities that can increase or decrease the rat
orders of magnitude.

The tunneling fluctuation is usually interpreted in terms
a process known as ‘‘chaos assisted tunneling’’~CAT!
@2–10#. An intuitive view of the CAT process could be a
follows. The presence of regular and stochastic motion in
classical phase space corresponds, from a quantum poi
view, to the possibility of having two kinds of states: regu
ones localized inside the symmetric tori and chaotic sta
which, being extended through the chaotic region, displa
non-negligible overlap with regular regions. The fluctuatio
in the tunneling rate are thus explained in terms of a thr
state tunneling process. The quantum particle first tunn
from the localized state to an extended chaotic one and
from this to the state located in the symmetric torus.
1063-651X/2001/64~5!/056215~11!/$20.00 64 0562
r-
n-
he
g
al
an-
ng

lar
al
s-
of

d
e
y

ct
i

e
e
e

s
by

f

e
of

r
s
a
s
-
ls
en

These features motivated the widespread idea that cla
cal chaotic trajectories can have an active role in the qu
tum process, helping or ‘‘assisting’’ the quantum particle
tunnel between the symmetric tori. Along this line, path
tegral techniques have been used to calculate the cont
tion to the tunneling stemming from complex orbits that co
nect the symmetric regular tori through the classi
stochastic layer@7#.

However, a real quantitative theory of CAT is still lack
ing. The main reason for this can probably be found in
chaotic nature of the third state that prevents simple ana
cal treatments. Moreover, there are some aspects of the
nomenon that do not seem to fit properly the intuitive int
pretation given by the CAT picture. For example, t
presence of strong decreases in the tunneling rate wh
together with the enhancements, occur as a result of a pa
eter change, contradicts the idea of a tunnel process b
‘‘assisted’’ by chaos. Another controversial aspect is rela
to whether chaos is essential for this phenomenon, be
possible to find similar behaviors in nonlinear system that
not classically chaotic. We shall further discuss these iss
in the next section.

The purpose of this paper is to assess whether this pic
applies also to a different tunneling process, namely, to
quantum escape of a particle that has been initially loca
inside a potential well. From a classical point of view, it
clear that the particle can overcome the potential barrie
the well only if its energy is larger than the barrier heigh
while in the quantum framework the tunneling across
classically forbidden region is always present. Clearly, t
situation is modified when, including the ingredient of cha
we perturb the system by adding a forcing term, i.e., a ti
dependent external force. The perturbation disturbs the re
lar motion of the classical particle and, by increasing its e
ergy, makes it possible for the particle to escape over
barrier. In the meanwhile, also the quantum process of t
neling changes due to the modification of the potential a
both the processes contribute to the decay@11#. Our purpose
is to choose a region of the system parameters where
classical and the quantum contribution to the decay can
separated, in order to study the properties of the latter p
©2001 The American Physical Society15-1
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ASHKENAZY, BONCI, LEVITAN, AND RONCAGLIA PHYSICAL REVIEW E 64 056215
cess in connection with the chaotic features of the class
phase space.

Our plan to study a decay process will lead us to deal w
an unbounded system, with a continuous spectrum, and
will prevent us from using standard methods, like the dia
nalization of the Floquet dynamic operator@12#, to obtain
directly the level splittings responsible for the tunnelin
Anyway, we shall be able to analyze the system by resor
to a somewhat simpler method: we shall calculate num
cally the time evolution of a quantum state initially locat
in the potential well and, by studying the decay of the pop
lation in the well, we shall be able to obtain the relati
strength of the tunneling as a function of the system par
eters. This will allow us to point out the differences betwe
this process of chaos-assisted decay and the tunneling
cesses in the presence of chaos~CAT!.

Finally, we shall be able to show that the picture th
singles out the classical nonlinear resonances as the
factor responsible for the fluctuations of the tunneling r
@9#, applies also to this context. We shall review the se
classical prediction of Ref.@9#, which is valid for bounded
systems, in Sec. V, and we shall verify its validity for dec
processes.

The following section will be devoted to review the qua
tum levels dynamics at the basis of CAT, to better und
stand the similarities and the differences between this p
nomenon and the perturbation of quantum decay that is
subject of this paper.

II. AVOIDED CROSSINGS AND TUNNELING
IRREGULARITIES

As we discussed in the previous section, the CAT is s
as the result of the interaction between regular and cha
states in systems that are classically chaotic. This interpr
tion is confirmed by the level dynamics of the tunneli
system. A typical situation is sketched in Fig. 1 where
can observe the change of two quasidegenerate levels, w
correspond to the pair of tunneling regular states, as a sys
parameter is varied. In almost the entire parameter range
splitting between the two states, and so the direct tunne
probability, changes smoothly. However, it may occur th
once the parameter is changed, a third level~dashed line!
crosses the two quasidegenerate levels. In the generic
states belonging to the same symmetry class do not c
each other, therefore, the appearance of a thirdcolliding state
gives rise toavoided crossingwith the state of the double
that belongs to the same symmetry class. The avoided cr
ing has a twofold consequence on the tunneling process
der study. First, in the vicinity of the crossing we cann
consider the tunneling as a process involving only the t
quasidegenerate states. Under this condition, the stan
two-state tunneling becomes a resonant three-state pro
Second, since the colliding third state modifies the ene
level of only one of the doublet states, the splitting of the t
levels changes. The level modification is, loosely speak
proportional to the system nonlinearity but, given the sm
value of the tunneling splitting in the semiclassical regim
the avoided crossing can produce a dramatic modificatio
05621
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the tunneling rate, even in the case of very weak chaos.
important to point out that the rate can increase by sev
orders of magnitude as well as vanish~see the arrow in Fig.
1! according to the value of the parameters. Moreover, du
the fact that the energy spectrum, in the nonlinear case, d
not show any regularity, the crossings with a third level
not follow a regular pattern, and the overall behavior of t
tunneling rate appears to be an irregular sequence of p
@4–7# instead of the smooth behavior expected in the regu
systems.

As anticipated, a controversial aspect of this effect is
nature of the third state that crosses the tunneling doub
The key point of the CAT picture is that the perturbation
the energy splitting is relevant only for those crossings
volving colliding third states that are located in the chao
region. However, it is well known that avoided crossings c
be found in completely regular systems too, this being,
fact, the counterpart of the existence of classical nonlin
systems that are not chaotic.

The connection between tunneling and avoided cross
has been extensively studied in the last 20 years@13–19#: in

FIG. 1. Sketch of the typical behavior of the energy levels o
classically chaotic quantum system as the parameterp is changed.
In ~a! the two solid thick lines describe a couple of quasidegene
levels of different symmetry. The thin dotted line represents
lower level of the tunneling doublet in the unperturbed case. T
dashed line describes a colliding third level. In~b! we show the
splitting of the two quasidegenerate levels in the perturbed
unperturbed case~thin dotted line!. All the units are arbitrary.
5-2
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CLASSICAL NONLINEARITY AND QUANTUM DECAY: THE EFFECT . . . PHYSICAL REVIEW E 64 056215
regular systems, as a connection between classical beh
and Fermi resonance@18,19#, or in classically chaotic sys
tems, to look for a definition of quantum chaoticity along t
lines of the Chirikov criterion for the birth of classical cha
@15,17#.

In those papers, the attention was focused on a two-s
phenomenon, namely, on the mixing of the two states
avoid each other, mixing that can be interpreted as a tun
ing process if the two quantum states are located in cla
cally separated region of the space, or, more generally, o
phase space. Moreover a connection was assessed be
this phenomenon and the existence of nonlinear class
resonances@14–16#. More precisely, as stated by Rober
and Jaffe´, ‘‘if two quantum mechanical zero-order states e
hibit a n:m Fermi resonance@and thus an avoided crossing#,
then the classical dynamics associated with the matrix
ment connecting the two states should exhibit an:m nonlin-
ear resonance.’’

In our opinion this is a good starting point for a theore
cal investigation of CAT. The tunneling irregularities are
fact connected to avoided crossings, as shown in Fig
while the nonlinear classical resonances are the primi
structure at the basis of classical chaoticity. We thus beli
that CAT can be seen as the effect of the superposition
several avoided crossings. A process similar to the birth
classical chaos due to the superposition of isolated nonlin
resonances. A path to quantum chaos that had already
discussed, even if without referring to tunneling dynam
@15,17#.

Nevertheless, due to the fact that nonlinear resonance
present in systems that are not chaotic, it is clear that cha
not a required ingredient for tunneling irregularities. For e
ample, by studying the connection between tunneling irre
larities and nonlinear resonances in a simple o
dimensional driven system, the authors of Ref.@9# showed
that strong tunneling fluctuations are present also in the
most integrable case, when the third state responsible fo
fluctuation is by no means chaotic.

III. THE MODEL: CLASSICAL DYNAMICS

In order to analyze the influence of classical chaos on
quantum process of escape from a potential well, we in
duce a simple one-dimensional forced system described
the following Hamiltonian:

H5
p2

2
1V~q,t ! , ~1!

V~q,t !5V0@12cos~2q!#1e@12cos~2q2Vt !#,

q5@2p,p#, V~q,t !50 otherwise. ~2!

The particle is located initially inside a potential well th
has the form of a sinusoidal function extended over two
riods, as shown in Fig. 2, and it is forced by a time perio
perturbation that is considered to be small compared to
static potential, i.e.,e!V0 @20#.
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We chose a perturbation term that turns system~1! into a
double-resonance-like Hamiltonian. This choice is dictated
by the need for simplicity. It is indeed clear that, as long
we limit our analysis to small perturbations, the particu
form of the external forcing does not affect the generic fe
tures of the decay process we want to study. On the o
hand, the adoption of Hamiltonian~1! presents many ben
efits. All the relevant information concerning the dynam
properties of our model can be derived from the dynamics
a well-known system, thedouble-resonanceHamiltonian,
which corresponds to Eq.~1! with periodical boundary con-
ditions @21,22#.

The presence of a periodic perturbation in Eq.~1! breaks
the integrability of the classical Hamiltonian. The most im
portant features of this condition is the appearance of n
linear resonances in the phase space together with reg
characterized by extended chaotic motion~stochastic layer!.
The relevance of the chaotic motion depends on the stre
e of the perturbation term, so that the system can be mor
less chaotic. In Fig. 3 we show a stroboscopic mapping
the dynamics, namely, the position in phase space at fi
intervals of time that are integer multiples of the forcing te
periodT52p/V, for a generic weak-chaos case. Some n
linear resonances and the stochastic layer around the se
trix are clearly visible.

The nonlinear resonances are the visible consequence
the small denominators problem. These are related to
secular terms that appear in the perturbative solution of
equation of motion of nonintegrable systems. In the we
chaos condition their position in the phase space can be
tained by considering the effect of the time-dependent te
as a perturbation on the dynamics expressed by the con
Hamiltonian

H05
p2

2
1V0@12cos~2q!#u2p,q,p . ~3!

FIG. 2. The unperturbed potential of Eq.~2!. We also show the
wave function of the two states used as initial condition in t
numerical calculations. The values of the parameters areV0

50.048 and\50.025. All the units are arbitrary.
5-3
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The Kolmogorov-Arnol’d-Moser~KAM ! theorem@23# states
that, as long as the perturbing term can be consideredsmall,
the main part of the phase space remains practically un
turbed and that only the tori that are resonant with the fo
ing term are destroyed and replaced by chains of islands
the ones shown in Fig. 3. The resonant condition can
written as

v0~E!5
m

n
V, ~4!

wheren and m are integer numbers andv0(E) is the fre-
quency of the unperturbed motion inside the well that
pends on the energyE. In our case, it is possible to expre
v0(E) in terms of the elliptic functionK(k) as

v0~E!5pAV0/K~k! ,

k[~E1V0!/2V0 . ~5!

The result of Eq.~4! would actually indicate that all the tor
are destroyed by the perturbation, being the rational num
dense among the real ones. Nevertheless, the KAM theo
assures that the effects of the perturbation becomes sm
and smaller with increasing the order of the resonance,
with increasing the numeratorm. This is clearly visible in
Fig. 3 where we can only recognize the chains correspond
to m51, i.e., the 1/5, 1/6, and 1/7 resonances. Howev
even for small perturbation, in the neighborhood of the se
ratrix of the unperturbed system the motion is always do
nated by chaotic dynamics. In other words, trajectories
in the absence of perturbation are bounded inside the po
tial well, can now overcome the energy barrier and even
ally escape from the well. Under the generic weak-ch
condition, the stochastic layer around the separatrix is
namically separated from the phase-space region corresp
ing to bounded trajectories by unbroken tori, so that the p
cess of escape driven by chaos is limited in phase sp
Therefore, in the classical case, the decay of the popula

FIG. 3. The classical dynamics inside the well. Strobosco
Poincare´ map. The values of the parameters areV050.048, e
50.005,V52. All the units are arbitrary.
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of the well is possible only if particles are initially place
inside the stochastic region. This process has been ex
sively studied in the last years in various classical and qu
tum models; the most known is probably the hydrogen at
in the presence of a strong radiation field@24,25#. In that
system the dynamic process described above leads to
ionization of the atom. However, in this paper we want
focus on the connection between chaos and processes
would be classically impossible, such as quantum tunnel
For that reason we shall analyze the decay of the well po
lation for a quantum particle initially located in the pha
space region corresponding, even in the presence of chao
bounded motion. In connection with this, it is worthwhile
remember that in quantum mechanics the situation is ne
simple. Whatever the initial condition is, the wave functio
cannot be sharply located inside a finite region but exhib
smooth decreasing tails that extend over the stochastic la
Therefore, to keep the classical chaotic diffusion process
small as possible, we shall consider a weak-chaos reg
with a small stochastic layer such as the one shown in Fig
and in addition to this, we shall study the decay of quant
states deeply localized inside the potential well.

IV. THE MODEL: QUANTUM DYNAMICS

We studied the quantum decay from the well of Fig. 2
integrating numerically the time dependent Schro¨dinger
equation associated with Hamiltonian~1!. This can be done
by using a FFT splitting algorithm@26# and absorbing
boundary conditions@27# as described, for example, i
Ref. @11#.

In order to single out the effect of the chaotic perturbati
on the process of quantum decay, it is necessary to choos
initial condition a state localized inside the well with an u
perturbed dynamics as simple as possible. The eigenstat
Hamiltonian~1! with e50 do not seem to be a proper choic
in this context with system~1! being an open system~con-
tinuous spectrum with stationary states that do not have fi
support inside the well!. We thus resorted to use as initia
condition metastable states that have a negligibleinternal
dynamicsand a long enough unperturbed lifetime inside t
well. These are theresonancesof the potential well of Fig. 2
defined in the quantum theory of scattering.

It is worthwhile to make the following remark. Since, i
the explored parameter range, the decay probability is ne
gible, the adoption of the eigenstates of Hamiltonian~3!
supplemented by periodical boundary conditions would le
essentially to the same results. As a first approximation,
can thus consider the initial states as stationary state of
unperturbed system. For the sake of simplicity, in the follo
ing we shall refer to them as ‘‘eigenstates’’ of the unpe
turbed Hamiltonian.

In Fig. 4 we show the time evolution of the populatio
inside the well,P(t)5*2p/2

p/2 uc(q,t)u2dq, for different values
of the forcing frequencyV. This figure has been obtained b
choosing as initial condition the fourth eigenstateu3& of the
unperturbed well. It can easily be realized that the de
probability can be strongly enhanced by the forcing te
even in the small perturbation regime (e50.005). Note that

c
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CLASSICAL NONLINEARITY AND QUANTUM DECAY: THE EFFECT . . . PHYSICAL REVIEW E 64 056215
in the unperturbed case the population decay is not visibl
the scale of this figure, the population remaining practica
unchanged in the studied interval of time. This shows t
the time scale of the unperturbed process is much longer
the maximum time that we explored numerically and a
confirms that, within the observed time, the chosen ini
states can indeed be regarded as ‘‘stationary states’’ of
unperturbed system.

To obtain a more quantitative representation of the p
nomenon we could define the decay rate as the inverse o
time integral ofP(t), namely, the inverse of the area co
tained under the curves of Fig. 4. This would imply a ve
long numerical simulation, up to a time where the populat
has completely leaked out. However, we are not intereste
the absolute magnitude of the decay rate, but only in
relative strength as a function of the system paramet
Thus, we can simply calculate the time integral ofP(t) up to
a certain timetmax and measure the rate by studying t
quantity

R512
1

tmax
E

0

tmax
P~ t !dt ~6!

as a function of the frequencyV of the forcing term. Clearly,
the values ofR depend ontmax, but this dependence does n
qualitatively affect the results, if the integration timetmax is
large enough.

As shown in Fig. 5,R shows a sequence of peaks, simi
to a resonant dependence on the frequency of the pertu
tion. We repeated the calculation for two different initi
conditions, by choosing the third and the fourth eigensta
of the unperturbed well. The decay rate for the third stat
smaller, as expected, since this state is more deeply loc
in the potential well, but in both cases we found a simi
behavior even if the position of the peaks and their inten
are not the same. Except for the presence of the peaks

FIG. 4. The time evolution of the well population in arbitra
units. The different curves correspond to 20 different values oV
included betweenV51.5 andV52.5. The values of the paramete
are V050.048, e50.005, \50.025, and the initial state is th
fourth eigenstate of the unperturbed well. The horizontal das
line corresponds to the unperturbede50 case.
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figures show that, as a general tendency, the decay incre
as the forcing frequency decreases. This can be unders
using arguments based on the classical dynamics of sys
~1!. Indeed, as shown in Fig. 7, the chaotic features of
classical phase space~i.e., width of the stochastic layer an
of the nonlinear resonances! increase by reducingV, thus
demonstrating that the forcing term becomes more impor
whenV gets smaller. Eventually, for extremely smallV, the
stochastic layer becomes so wide that, for the chosen in
conditions, the escape from the well via the direct class
process becomes the dominant process. Since we are r
interested in the quantum mechanism of escape from
well, we shall not explore the condition of smallV ’s corre-
sponding to strong classical chaos.

In addition to this, there is a further reason to limit th
analysis to not too smallV ’s. Our evaluation of the decay
rate, as the integral of the surviving population in the w

d

FIG. 5. R, see Eq.~6!, calculated withtmax5400, as a function
of the driving frequencyV. The values of the parameters areV0

50.048,e50.005,\50.025. The two figures correspond to diffe
ent initial conditions:~a! is obtained by choosing as initial state th
fourth eigenstate of the unperturbed well,~b! by choosing the third.
The numbers and the vertical dashed lines refer to the clas
nonlinear resonances as discussed in Sec. V. The insets co
enlarged views. Arbitrary units.
5-5
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ASHKENAZY, BONCI, LEVITAN, AND RONCAGLIA PHYSICAL REVIEW E 64 056215
over a finite time, is meaningful only if the time of integra
tion is much longer than the period of the perturbation, a
therefore, we shall limit ourselves to study the range of la
V (2p/V!tmax).

However, it is important to point out that the numeric
results represented in Figs. 4 and 5 do not account for
process of classical escape from the well, even for the sm
est used value ofV. A direct calculation demonstrates in
deed that the classical decay is always negligible in the c
sidered parameter range ofV. This can easily be assessed
numerically integrating system~1! using a classical initial
particle distribution mimicking the phase-space represe
tion of the initial quantum state~see Sec. VI for details!.
Even for the smallest value ofV used to obtain the results o
Figs. 4 and 5, the classical population in the well does alm
not change with time.

Therefore, the peaks and the general tendency of Fig
and 5 are genuine quantum effects, but, while the latter
be associated with the increased effectiveness of the for
term in Eq.~1! with decreasingV, the former effect does no
have any simple interpretation. The next section will be
voted to deepening the understanding of this issue.

V. A SEMICLASSICAL ANALYSIS

The results shown if Fig. 5 resemble the typical CA
behavior: when a system parameter is changed the decay
presents an irregular sequence of peaks on a smooth b
ground. It is thus natural to look for a connection betwe
CAT systems and our model. First of all, we notice that, d
to the continuous nature of spectrum, the level dynamics
our system cannot be simply described in terms of avoi
crossings. Nevertheless, we believe that the phenomenon
derlying Fig. 5 retains much of the features of the CAT p
cesses. In particular we think that the argument introduce
Ref. @9# to explain the tunneling irregularities of a quas
integrable system, can be effectively used also in this mo
In the cited reference, a connection between the peaks in
tunneling rate and the position of the nonlinear resonance
the classical phase space was found.

The analysis of Ref.@9# follows the line of Refs.@28,29#
and is based on a semiclassical approximation that makes
of simple arguments. We shall assume that the classical
tem is only weakly perturbed by the external perturbati
the size of the chaotic region is considered to be small w
respect to the portion of the classical phase space covere
regular trajectories so that the main effect of the perturba
is the appearance of chains of nonlinear island in the cla
cal phase space as shown if Fig. 3. Under this condition,
area of the regular region, that is, the phase-space re
encircled by the last unbroken torus inside of the stocha
layer, is much larger than\. In this way, the regular region
can accommodate several quantum states and the sem
sical approximation becomes meaningful.

As we discussed in the Introduction, the connection
classical nonlinear resonances to avoided crossings was
recognized@14–16#. For each nonlinear resonance in t
classical motion we can find a level crossing in the quant
spectrum. These crossings are actually avoided but the m
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fication of the levels can be so small as to become practic
negligible for normal dynamics. In fact the level separati
at the crossing point is related to the nonlinearity streng
which in our case is represented by the strength of the t
dependent perturbation, and the former vanishes expo
tially as the latter decreases@15,28,29#. Moreover, the levels
modification decreases once the order of the nonlinear r
nance increases. This can be seen as the counterpart o
KAM theorem because, strictly speaking, the level crossi
are dense in the spectrum in the same way as nonlinear r
nances are dense in the phase space,~see Sec. III!, but only
the lower order ones really affect dynamics.

This is still true if we consider a system with a spectru
similar to the one depicted in Fig. 1, but in this case we ne
to compare the smallness of the levels modification with
other small effect, namely, with the level splitting due to t
tunneling. It is clear that an avoided crossing, negligible
compared to the energy scale of system dynamics, can
nevertheless, very important if we concentrate our atten
on tunneling processes. The unperturbed splitting can be
fact, significantly modified and the tunneling rate can chan
by order of magnitude.

The effect of tunneling modification due to isolate
avoided crossings, i.e., to isolated nonlinear resonances,
if broadly discussed@13–19#, received little attention in the
CAT papers, which have been mainly concerned with
role of the stochastic layer and the classical transport the
as the main contribution to the barrier crossing. This effec
surely present, but its contribution is not always the m
important, at least in a weak-chaos regime, where the eff
of the nonlinear resonances can dominate the dynamics@9#.
These prechaotic structures cannot, in fact, contribute to
classical transport over the barrier, because they are em
ded in a regular region of unbroken tori, but they can pert
the quantum dynamics as discussed above.

This process, which we think to be deeply connected w
CAT, in the weak-chaos regime can give a contribution
the tunneling rate modification even more important than
one connected to the chaotic region of the phase sp
Moreover, due to the fact that the perturbing third state is
chaotic, it is possible to obtain a quantitative prediction
the avoided crossings and hence on the positions of the
neling irregularities. We shall now review the derivation
this prediction.

Let us first note that the Hamiltonian under study is tim
dependent and that this prevents us from adopting
Einstein-Brillouin-Keller~EBK! quantization conditions@30#
in their original form. However, following the work o
Breuer and Holtaus@29#, who, in turn, extended the metho
of the canonical operator as developed by Maslov and Fe
riuk @31#, it is possible to adapt the EBK prescriptions
periodically time-dependent systems. The generalization
Ref. @29# is based on the prescription of Arnold@32# and
leads to semiclassical quantization rules for the Floq
quasienergies and quasieigenstates@12#. This is made pos-
sible by a suitable extension of the phase space, including
time t as a coordinate and adding the corresponding co
gate momentum. In the one-dimensional case the semicla
cal quantization prescriptions read
5-6
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J5
1

2p R
g1

pdq5\S n1
n

4D ,

En,m52
1

TEg2

~pdq2Hdt!1\Vm. ~7!

The meaning of the symbols adopted in this expression
be explained by remembering that in the one-dimensio
case the extended space is the$q,p,t% space. A regular tra-
jectory is contained on a flux tube in this tridimension
space, flux tube that repeats itself periodically along tht
direction. ThusJ is the action associated with the quantiz
trajectory,g1 is a close path winding once around the fl
tube and lying in the plane at a given timet andg2 is a path
stretching itself out on the surface of the flux tube such t
it can be continued adopting periodic boundary conditio
In other words, the pathg2 in the extended tridimensiona
phase space, moves from an initial point lying on the pla
t50 to a final point lying on the planet5T. Note also that
we can choose to lay the pathg1 on the Poincare´ section of
the flux tubes. Finally, if we restrict ourselves to consider
the closed orbits inside the potential well, the Maslov ind
assumes only the valuen52.

Worth a detailed discussion is the structure of the qu
tized energyEn,m ~for simplicity, we shall use the term
energyand stateas equivalents ofquasienergyand quasis-
tate!. While the indexn, whose values are fixed by the fir
of Eqs.~7!, has the usual role of principal quantum numb
the indexm, and the dependence ofEn,m on this one, reflects
the periodicity of the time dependent term of the Ham
tonian. In fact, an important aspect of the Floquet theory
the Brillouin zone structure of the energy spectrum: for ea
physical solution labeled byn we have an infinite series o
representatives labeled by the value ofm. Naturally, all of
the physical information is contained in the first Brillou
zone 0<En,m,\V, or equivalently, we can say that an
solution of Eqs.~7! can be folded back to the first Brillouin
zone by an appropriate choice ofm.

At this point it is important to recall that the earlier fo
malism represents a valid quantization procedure only
closed systems, where the notion of energy levels is me
ingful, and where the phase space is filled with regular t
However, we are investigating the properties of states tha
well inside the stability region, and that present a small
cay probability~see Fig. 5!. In this condition, we believe tha
an analysis which, according to the prescriptions of CA
connects the tunneling irregularities with the presence
avoided level crossings, can retain its validity. Let us p
ceed disregarding the continuity of the spectrum and look
for the presence of level crossings in the unperturbed Ha
tonian spectrum as a function of the forcing frequencyV.

Following Ref.@29# we can look for the level crossings b
replacingH with H0, let us in fact recall that we are alway
considering a perturbative approach. The condition of cro
ing between statesn andn8 in the Brillouin zone yields the
following equation:

H0@\~n11/2!#1\Vm5H0@\~n811/2!#1\Vm8. ~8!
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This equation can be simplified if we assume that\ is so
small as to make the quantity\(n2n8) negligible. If we
now expand the right-hand side of this equation around
small parameter, we obtain

dH0

dn
~n2n8!1\Vm5\Vm8, ~9!

which can be rewritten as

dH0

dJ

dJ

dn
~n2n8!5\V~m82m! ~10!

or, by usingJ5\(n11/2),

v05
Dm

Dn
V1O~\!, ~11!

wherev0[v0(J)5dH0 /dJ is the frequency of the unper
turbed motion as a function of the classical actionJ, Dn
[n82n andDm[m2m8. The condition of levels crossing
in the limit of vanishing\, can thus be obtained by solvin
the classical equation that corresponds to the condition
the onset of the classical nonlinear resonances.

Expression ~11! confirms the result of the literature
namely, that for sufficiently small\8s, there is a correspon
dence between the presence of a nonlinear resonance i
classical phase space and a level crossing in the spec
and, therefore, a correspondence between the tunnelin
regularities and the nonlinear resonances. In other words
tunneling peaks are the quantum manifestation of the re
nant behavior of the underlying classical dynamics. The
sult of Eq. ~11! is even more specific, in fact, it yields th
following relation: the crossing of the two unperturbed leve
En,m

0 and En8,m8
0 is related to the superposition between t

semiclassical quantization torus of one of the two states
the nonlinear resonance of appropriate orderDm/Dn.

This process admits a simple intuitive representation.
us consider, for example, a quantum state located deep
the well. Its quantization torus lies inside the well and t
wave function in the semiclassical regime is mainly loca
around this torus. The decay rate in the unperturbed case
be obtained by the usual semiclassical calculation of
probability of barrier crossing. In a regime of weak chaos
we turn the perturbation on, we have a high probability th
nothing happens, due to the fact that most of the phase s
inside the well remains unperturbed. But if we change
external parameter as, for example, the forcing frequencyV,
we obtain that the nonlinear resonances move in the ph
space and, for particular values of the parameter, one of t
can intersect the quantization torus, which is therefore
stroyed. This would be probably reflected in a perturbat
of the quantum state and thus in a modification of its de
rate. This is exactly what is described by Eq.~11!.

As discussed before, Eq.~11! involves resonances of an
order and this implies that a change of a system param
indicates that a chosen level undergoes a virtually infin
number of crossings. However, the perturbation produced
the avoided crossings strongly depends on the orderDm of
5-7
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the resonance and in practice, if we restrict ourselves to
perturbative regime, the only significant crossings are th
associated with the first-order resonances (Dm51). On the
other hand, the same happens in the classical dynamic
discussed in Sec. III.

The simple prediction of Eq.~11! is valid in the strong
semiclassical limit and is therefore unavailable for a num
cal check, being the smallest value of\ dictated by the com-
puter limitations. The relation between nonlinear resonan
and tunneling peaks has been indeed checked in Ref.@9# by
means of a further expansion of Eq.~8!. To do that we pro-
ceed by evaluating the second-order term in\(n2n8). We
obtain

v01
1

2
\

dv0

dJ
Dn5

Dm

Dn
V1O~\2!. ~12!

On the other hand,

dv0

dJ
[

dv0

dE

dE

dJ
5

dv0

dE
v0 . ~13!

Thus we can write Eq.~12! as follows:

v0~E!5
Dm

Dn

V

S 11
\

2

dv0~E!

dE
DnD 1O~\2!. ~14!

We give an analytical expression todv0(E)/dE, by using
Eq. ~5!, as

dv0

dE
5

p

4k2AV0

1

K~k! S 12
E~k!

k8 2K~k!
D , ~15!

wherek8 2512k2. Equation~14! represents a generalizatio
of the classical nonlinear resonance condition: the freque
ratio is renormalized by means of a quantum correction p
portional to\.

By using this prediction we are now able to verify o
conjecture about the validity of this method also in t
present case. From Eq.~14! it is possible to predict the po
sition of the peaks of decay. After fixing the values ofDm,
Eq. ~14! can be solved as a function of the energyE for
several values ofn. The graphical solution for the first-orde
crossings,Dm51, is shown in Fig. 6, where the thick soli
horizontal lines correspond to the semiclassical energie
the third and fourth eigenstates of the unperturbed Ham
tonian~3!, i.e., of the states that we chose as initial condit
in order to obtain the results of Sec. IV. The dotted a
dashed curves represent the quantum renormalized ene
of the classical nonlinear resonances of different ordern ~the
order is indicated by the numbers in the figure!. The cross-
ings between the horizontal lines and the curves thus indi
the solutions of Eq.~14!. Their position should also indicat
the position of the peaks of the decay rate. This is, in fa
approximately true, as one can check by going back to
5, where we indicated the solutions showed in Fig. 6 with
numbered vertical dashed lines.
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We are now able to justifya posteriori the use of the
semiclassical theory of this section in the present case.
main difference between the physical system of Ref.@9# and
Hamiltonian ~1! is the discreteness of energy levels. In t
present work we cannot speak about level crossings and
the calculations above could look invalidated. On the ot
hand, we showed that the avoided crossings are noth
more than thetrait d’union between the nonlinear classic
resonances and the peaks of the decay rate: the presen
the nonlinear resonance produces a level crossing that i
flected in a rate irregularity. The same happens for the s
tem of Hamiltonian~1!: the classical phase-space structu
and the decay rate modifications are related even if the in
mediate step is less clear due to the continuity of the qu
tum spectrum. Probably we could find a process similar
the avoided crossings, but we do not need to look for it as
showed that the quantum-classical connection works.

The role of the nonlinear resonances in the perturbation
tunneling seems thus to be established also in a system
a continuous spectrum, even if the prediction looks appro
mate. The nonperfect agreement between theory and num
cal calculation can be traced back to two major approxim
tions. The first is the finiteness of\ that makes Eq.~14!
slightly inaccurate, while the second and the most import
would be the approximation related to consider the unp
turbed states in Eq.~8!. This last is in fact a double approxi
mation, because it disregards the effect of the perturbat
but this is not so important as shown in Ref.@9#, and the
effect of the unperturbed decay that actually destroys
discrete levels picture we used. Nonetheless, we think
our results are not questionable and to make them cleare
the reader, we shall now resort to a graphical picture.

FIG. 6. The solutions of Eq.~14! represented by the crossing
between the solid horizontal lines, indicating the energy of the th
and fourth eigenstates, and the energy of various nonlinear r
nances indicated by their ordern ~dashed and dotted lines!. The
crossings give the theoretical prediction on the position of the pe
of decay, which is reported in Fig. 5 as the vertical dashed lin
The values of the parameter areV050.048, e50.005, V52, \
50.025. Arbitrary units.
5-8
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VI. A PHASE-SPACE REPRESENTATION: QUANTUM-
CLASSICAL COMPARISON

As mentioned above, in order to connect the quant
dynamics to the classical phase-space characteristics
must extend the concept of phase space to the quantum
This can be done by using a phase-space representatio
the quantum state and among all the different possibilit
we chose to use the Husimi representation, defined as

r~q,p!5 I E
2`

`

dxaq,p~x!c~x!I 2

, ~16!

where uaq,p& is a minimum indetermination state~coherent
state! centered in (q,p). Using Eq. ~16! we can obtain a
phase representation of a quantum state in terms of the p
tive definite distributionr(q,p) @33#.

In particular, we can calculate the Husimi distribution
the initial state and, due to the choice of quasistationary
tial conditions, this will allow us to obtain the correspo
dence we are looking for in an easy way. In fact, for sm
decay probability, we can safely disregard the dynamics
side the well for the times we explored. This means that
phase-space representation of the quantum state pract
does not change during the time interval considered in Fig
and that in the comparison between quantum and clas
phase space we can limit ourselves to dealing with the in
quantum distribution.

In Fig. 7 we show portraits of the classical phase space
increasing values ofV. For clarity, we draw only the sto
chastic web and the nonlinear resonances island struct
all the rest of the phase space being filled with regular t
As explained in Sec. III, due to the choice of the particu
form of the time dependent perturbation, to the first-orde
e we have only resonances of the formv0(E)5V/n where
v0(E) is the frequency of the motion inside the unperturb
well. The frequencyv0(E) is a decreasing function of th
energyE for 0,E,2V0, being equal toA4V0 for E50 and
vanishing forE52V0 that corresponds to the separatrix m
tion, see Eqs.~5!. This means that as we approach the se
ratrix we find resonances of larger-ordern. We realize that as
the value ofV is increased, the nonlinear resonances m
inside the phase space, getting closer to the center of the
and eventually disappearing when the relation~4! cannot be
fulfilled any more. In the meanwhile, new resonances app
moving out of the stochastic layer that is the region of
overlapping of all the infinite resonances of higher-ordern.

In this motion toward the center of the well, the vario
resonances cross the region of the phase space that is
pied by the Husimi distribution of the initial quantum sta
@shaded area in Fig. 7~b!# and, as discussed in Sec. V, w
expect this to be related to the peaks of Fig. 5. The regio
parameters explored in Figs. 5 and 7 is the same and fro
first inspection we actually realize that the number of re
nances crossing the shaded area corresponds to the nu
of peaks in the decay rate. This first result is already c
vincing but we can be more precise by singling out t
phase-space portraits that correspond to the decay peak
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This is done in Fig. 8 where we show the classical pha
space structures and we indicate by the two continuous l
the borders of the Husimi distribution of the initial quantu
state. The expected results are confirmed by the observa
that the peaks in the quantum decay rate are related to
modification of the classical phase space under the quan
initial distribution by a nonlinear resonance. The perturb
tion seems to be effective when a nonlinear resonance en
the external border of the initial state distribution rather th
when the nonlinear resonance passes over the center o
distribution where the quantization torus is located. This
qualitatively in agreement with Eq.~14! that predicts that the
perturbation appears when the nonlinear resonance is clo

FIG. 7. Classical phase-space portraits for different values of
driving frequencyV. The values of the parameter areV050.048,
e50.005, \50.025. The value ofV, increasing from~a! to ~j!, is
V51.4, 1.6, 1.7, 1.8, 1.9, 2.1, 2.2, 2.4, 2.5, 2.7. The shaded are
~b! indicates the area under the Husimi distribution of the init
state, which in this case is the fourth eigenstate of the unpertu
well. Arbitrary units.
5-9
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the semiclassical quantization torus, how much closer be
dictated by the quantum correction that modifies Eq.~14!
with respect to Eq.~4!. In fact, the quantum correction to th
forcing frequencyV is positive ~the term dv0(E)/dE is
negative for energy smaller than the barrier heights and
the renormalized frequency is always larger thanV) and this
means that the decay peaks should appear for values oV
smaller than the values for which the nonlinear resonan
superpose the quantization torus. This is precisely what h
pens: the peaks correspond to the approaching of the no
ear resonances from the outside.

This result comes along with a simple intuitive explan
tion: when a nonlinear resonance enters the external bo
of the initial state, part of the initial distribution is move
outward by the islands structure, this produces a higher p
ability of tunneling across the barrier and thus an increas
the decay. This effect becomes less important once the
linear resonance penetrates inside the shaded region, un
disappears when the resonance is completely embedde
the central part of the distribution.

The results of Sec. V have been thus confirmed by
comparison of this section, making clearer the role of
classical nonlinear resonances.

VII. CHAOS-ASSISTED DECAY VERSUS CHAOS-
ASSISTED TUNNELING

When we reviewed the numerical results we noticed t
we found only enhancement of the decay compared to

FIG. 8. Classical phase-space portraits for different values of
driving frequencyV. The values of the parameter areV050.048,
e50.005, \50.025. The values ofV are chosen as the value
corresponding to the peaks in Fig. 5~a!, i.e.,V51.73~a!, 2.015~b!,
2.25 ~c!, and 2.44~d!. The two continuous circular curves indica
the outer and inner borders of the Husimi distribution of the init
quantum state~the fourth eigenstate!. The border is defined arbi
trarily as the contour level of the distribution at 0.2 times the ma
mum height. Arbitrary units.
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unperturbed condition. This is not the case in CAT, whe
the avoided crossings can produce both enhancement
decrease of tunneling, which can also vanish for particu
values of the parameters@3#. For this reason we wrote in th
Introduction that the termassistedused in CAT is not really
appropriate, but it seems that it could be better used in
present context. To explain this different behavior we co
jecture that this can be seen as a consequence of the c
nuity of the spectrum in our system. In fact, the quenching
the tunneling is produced by the accidental degeneracy of
levels of the tunneling doublet, as seen in Fig. 1. This deg
eracy is due to the modification induced by the crossing w
the third level. In our case we do not have discrete levels,
a continuous density of states and thus the former pic
simply does not apply. In other words, for every value of t
parameter the modification of the spectrum due to the p
ence of avoided crossings cannot lead to a complete de
eracy of the states and thus to a complete quenching of
decay. A similar situation and a graphical representation
this process can be found in a recent paper@34#. On the other
hand, this continuous spectrum characteristic cannot c
pletely rule out the possibility that nonlinear resonanc
could produce also a decrease of the unperturbed decay
which could be present in some region of parameters or
different choices of initial conditions.

VIII. CONCLUSIONS

A numerical calculation of the decay from a potential w
due to tunneling showed that, in presence of classical ch
the decay can be strongly enhanced and that this enha
ment depends on the system parameters in a resonan
way. A qualitative inspection of the classical phase-sp
structure revealed a connection between the peaks in the
cay probability and the presence of classical nonlinear re
nances in the region of phase space occupied by the Hu
distribution of the initial state. This correspondence has b
quantitatively explained using a semiclassical result t
has been shown to be valid in the case of chaos-ass
tunneling.

This semiclassical prediction is based on a picture t
singles out the classical nonlinear resonances as the m
factor responsible for the fluctuations of the tunneling ra
The presence of a nonlinear resonance in the region of
phase space that represents the support of the quantum
leads to the tunneling perturbation, in a way that appear
the quantum manifestation of the classical ‘‘small denomi
tors’’ problem @21#. This is a direct connection between th
modification of a purely quantum effect, the tunneling, a
the classical phenomenon of destruction of integrable
namics that is at the basis of the chaotic behavior.

Finally, by studying a decay process, we addressed
unbounded system, with a continuous spectrum, and this
lowed us to point out the differences between this proces
nonlinearly assisted decay and CAT.
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